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I. INTRODUCTION. 

One of the most widely used methods for investigating the proper- 
ties of the cosmic radiation involves measurement of their absorption 
in matter.  By means of coincidence-counter telescopes (see Fig. 1) 
which record an event only when every member of a train of Geiger- 
Mueller counters is discharged simultaneously by an ionizing particle, 
it is possible to select rays which have followed paths lying within 
specified limits. Thus, a path may be defined such that  all of the rays 
actuating the apparatus must pass through an absorber interposed 
between successive counter trays. From observations of the counting- 
rate of the telescope as a function of the thickness and nature of the 
interposed absorber, the desired information is obtained. 

In practice, owing to the finite aperture of the counter train, it is 
evident that  the cosmic-ray particles detected in a particular absorption 
experiment may traverse total paths varying in length from L, the 
perpendicular separation between extreme trays, to (L 2 + l 2 -t- w 2) ~, the 
diagonal distance between opposite corners. For an accurate analysis 
of the results, it is thus necessary to determine the average path length 
through the telescope with respect to all of the radiation concerned, in 
order to obtain a factor for converting the measured thickness of the 
interposed material to effective thickness as regards absorption proper- 
ties. The necessity for applying this correction has only rarely been 
appreciated (1), 3 and, as the following results indicate, the contribution 
is not always negligible. The error may become especially serious in 
the comparison of results obtained with different counter trains. 

The effective path length must  of course be calculated with respect 
to a particular dependence upon zenith angle 0 of the unidirectional 
cosmic-ray intensity, I(0), defined as the number of ionizing particles 
per square centimeter per unit solid angle per second arriving in a given 
direction. It has been established for some time that, at sea level, the 
variation is in good accord with the equation (2,3,4,5) 

x(0)  = z ( 0 )  cos  0. (1) 
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At an altitude of 4300 m. approximately the same law (1) applies to 
high energy mesons having ranges exceeding 15 cm. of Pb, whereas 
for the soft component the exponent may be 3. A departure from this 
relationship apparently occurs at higher altitudes, as was shown by 
Swann, Locher and Danforth (6), who obtained a value of 0.21 for the 
ratio 1 (90°)/1(0°). 

In order to compare absorption measurements made in the strato- 
sphere with those obtained at low altitudes, it is evidently important 
to ascertain, for the particular cosmic-ray telescopes utilized in obtain- 
ing the data, the magnitude of the dependence of the effective path 
length upon the nature of the angular distribution of cosmic-ray in- 
tensity. For this purpose, calculations have been based upon several 
different laws in addition to (1), representing alternative possible modes 
for the variation of intensity with zenith angle. At extremely high 
altitudes, such as have been attained by apparatus carried aloft in free 
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balloons during investigations conducted by one of the authors (7), the 
correct law probably lies within the range considered. Formulas have 
have been obtained, and families of curves have been computed showing 
the average path length through a cosmic-ray telescope as a function of 
all of the dimensions of the apparatus (8). These results may be util- 
ized for obtaining corrections to be applied to the previously reported 
data of numerous investigators, or for designing systems for experiments 
at high altitudes in a manner such as to minimize the effects of changes 
in the directional characteristics of the cosmic radiation. 

H. MATHEMATICAL DERIVATIONS. 
A. Theory. 

The trays in this cosmic-ray telescope are assumed to be rectangular 
and of length l and width w. The vertical distance between the upper- 



Oct., I948.1 VERTICAL COSMIC-RAY TELESCOPE. 295 

most  and lowest t rays is L. As shown in Fig. 1 the x axis is taken to 
coincide with one of the long edges of the lowest tray, and the z axis 
is vertical. The  lowest t ray  is designated plane 1 and the cartesian 
coordinates of a p o i n t  in it are (xl, yl, 0). The  uppermost  t ray  is 
designated plane 2 and the coordinates of a point  in it (x2, Y2, L). 

Consider two elements of area, dA 1 in the lowest t ray  and dA 2 in 
the uppermost  tray. The cosmic rays which pass through both of these 
elements of area make an angle 0 with the vertical. The  number  of 
cosmic rays which pass through both dA1 and dA2 per unit  t ime is 
given by dN,  where 

d N  = I(O)&o dA1 cos O, 

where d~0 is the solid angle which dA ~ subtends at  dA 1. 

(2) 

Obviously 

dA 2 cos 0 
do~ - V ' (3) 

where X is the distance from dA 2 to dA 1. 
I (0)  is a constant  for any given direction, bu t  will depend upon the 

zenith angle O, if the cosmic-ray intensity varies with 0. Subst i tut ing 
Eq. 3 in Eq. 2, 

d N  = I (O)dAldA2 cos 2 0 
V (4) 

The  most  common formula given for the dependence of cosmic-ray 
intensity on zenith angle is represented by Eq. 1. 

We will assume 

Then  

But  from Fig. 1 

Hence, 

Also 

and 

I(O) = I (0)  cos p O. 

L 
c o s  0 = (6) 

d N  = I(O)L~+2dA idA 2 X,+4 (7) 

V = L ~ q-  (y2 - -  Yl)  2 + (x2 - -  x l )  2 (8 )  

dA 1 = dxldy l  I 
dA  2 dx~dy2.. (9) 

If X is the average path  length through the cosmic-ray telescope, 

d N  = I(O)dA idA 2 cos p+2 0 
( s )  
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obviously 

This gives 

= f ),dN 

f dN 
(lO) 

~, w z ~'~ dx2 
~ ~__. f0 dylf0 dy2f0 dXlJ0 ~ (11) 

foWdSlfoWd,2foldXlf lax2 
For any  value of p the problem consists in evaluat ing integrals of the 

type  

f? c Cn ---- dyl dy, dxl do ~n 

We consider the cases when 

p = 2, 1, 0, and - 1 ,  so tha t  
n = 2, 3, 4, 5, and 6. 

B. Two-Dimensional Problem (w << 1). 

In the special case when w is so small t ha t  variat ion in y can be 
neglected 

= Ap+a (13) 
A v+4 ' 

where 

fo Z fo z dx~ (14) An ~ dxl EL 2 + (x2 - x,)~J "/2" 

Even  when dealing with the general case where the  variat ion in y can- 
not  be neglected, it is worth while evaluat ing the An first, because by  
merely  subst i tut ing ~L ~ + (y~ - yl) ~ for L in these results one has the 
result  of carrying out  the two integrations in xl and x2 in Eq. 12. 
Fur thermore ,  the  work of evaluat ing A n is so easy for all n considered 
here t ha t  it is no t  necessary to give the details of the process of integra- 
tion but  mere ly  the results as follows: 

2l l L ~ + P 
A2 = z t a n - a z - l ° g  L2 , (15) 

2 2 
A8 = ~ i ~ L ~ + l ~ - ~ ,  (16) 

l l 
A4 = ~-~ tan  -I L '  (17) 
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4 4-L-~ + lS 2 2 
3L a 3 L S 4 L ~  ' 

3l l 
+ ~ tan-1 

(18) 

I t  follows t h a t  

and 
l 

u ~ - .  (21) 
L 

Bs(u) = 2u tan  -1 u - log (1 + uS), 

B3(u)  = 241 + u S -- 2, 

B4(u)  = u t an  -1 u, 

(22) 

(23) 

(24) 

4 2 2 (25) 
B s ( u )  = -~ 4-1 + u ~. 3(1 + u s) 3 '  

3 1 1 
Bs(u )  = ~ u tan  -1 u - 2.(1 + u S) + 4" (26) 

Subst i tu t ing Eq. 20 in Eq. 13, 

Bp+3(u) (27) 
= B ~ + d u ) '  

where,  as indicated in Eq. la,  p determines  the dependence of the  in- 
tens i ty  on zenith angle. 

1. Series A p p r o x i m a t i o n s  when u < 1. 

p = 2 (cos s 8 dis tr ibut ion)  : 

~" = 1 + ~ 1  u S _  , o l u 4 + ~ 3 7 7  u 6 _  60--6 29 u8 + . . . .  (28) 

p = 1 (cos O distribution) : 

Z =  1 +  u s - -  
41 u4 + 263 uB . . . .  (29) 
720 6 ~  " 

p = 0 (isotropi¢ d i s t r ibu~on):  

1 391 44089 =l+i uS- 1 7 u , + _ _ u  6 u 6 + . . .  (30) 
L 360 12 096 1 814 400 " 

1 1 
A6 = (19) 4L 4 4LS(L s + / s )  

I t  is desirable for both  theoretical  and practical reasons to wri te  the 
formulas for ~ in dimensionless form. For  this reason we introduce 
B, , (u) ,  where 

B, , (u)  --  L'*-*A,, (20) 



2 9 8  ENOS E .  W I T M E R  AND MARTIN A .  POMERANTZ. [J. F. I. 

p = -  1 (sec. 0 distribution): 

~, 1 3 19u~ . . . .  (31) ~.= 1 +  u S -  u 4 + 8 ~  

All these series formulas are approximations valid only when u < 1. 
I t  is interesting to note that  for all the values of p considered : 

£ - - 1 +  u 2 + . . .  (32) 

to that  degree of approximation. 
A study of the coefficients in formulas 28 to 31 shows that  the 

numerical values obtained with the different distribution laws differ 
only slightly except when u is large. This is in accordance with the 
results of a qualitative approach to this problem. 

C. Three-Dimensional Problem. 

1. Evaluation of Cn. 

We will now evaluate the  integrals Cn defined in Eq. 12. 
n = 2 :  

From Eqs. 12 and 15 

f o" f o *° 1 1 d y 2 C2 = 2l dyl 4L ~ @ (y~ -- y,)~ tan-1 ~/L 2 + (y2 -- yl)~ 

f; f0 -- dy~ log [L 2 + 12 + (y2 - yl)'-]dy2 

+ LWdY,  f o W l o g [ L ' +  (y~-y l )2~dy2.  (33) 

The only one of the three integrals on the right that  offers any difficulty 
is the first. It  is evaluated by making the substitution : 

l 1 = sin -1 (34) 
4L 2 + (y2 -= y,)~ 4L 2 + 12 % (y~ - y;fi  

tan-1 

Then 

fo fo , dyl 4L ~ + (y2 -- yl) 2 tan-1 

fo" fo = dyl 4L ~ + 1 ~ + (Y2 - Yl) 2 

[ 12 ] - '  sin_ 1 
X 1 - -  L2 ~t_ l 2 Jr_ (Y2 - -  Yl)  2 

_ -  - 

~o ~E(r  - j~@~ (j~)~ 

1 
4L ~ + (Y~ -- Yl)* dy2 

l 

~]L 2 + l  2 +  (Y2--Yl) ~ 
1 } lSr+1 

(2j % 1) -~7  G,', 

dy2 

(35) 
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where 

f? f? G,' -- dyl [L" + l 2 + (y, - yl)2] *+1 (36) 

This result  is obtained' by expanding the sin -I and the square bracket  in 
the integrand.  The  integrat ion (9) of Eq. 36 yields:  

2w w L ~ + l 2 + w ~ 
Go' - ~]~- - - f i  tan - 1  log l~ , (37) + 4 ~  + l ~ L 2 + 

GI' - w t a n -  1 w (37a) 
(L 2 + l 2) J 4 ~  + l 2 

and for r >/ 2 

_ 1 ,-ix_., (2r)! F(r - a)112 1 
G/ 

(L 2+12)  " ~ ( 2 r - 2 a +  1)! 2~'(r!)~ ( r - a )  
i 

,-1 (2r) l [ ( r  - a)!]5 1 1 
- ,=,Y'~ (2r 2 a +  1).t 22,(rI)2 "(r_ c)(L ~ +12)" 

1 2(2r) v w w 
X q- ~ "  tan -1 (37b) 

(L 2 + 12 + w,)~-. 22.(r !)2 (L ~ + 12)~+~ ~ + l 2 

Then  

C2 = (L 2 - F l  2 - w  ~) log (L  ~ d - l  ~ - b w  ~) - (L ~ - w  ~ ) log (L  ~ + w ! )  

w 
-- (L ~ + P )  l o g ( L  2+12  ) + L * l o g L  2 + 4 w L t a n  -~ 

w 
_ 4w4-L ~ + l * tan-1 

4 ~  + l ~ 

+ 2 1 ~ - ~ ( 2 r - 2 j ) ,  ( 2 j ) ,  1 } /2~+2 
~=o ~=o[(r j )  !-]2" (j  !), ( 2 y +  1) ~ G / "  

n = 3 :  
From Eqs. 12 and 16: 

r o r o + + - 
C3 2 dyl £ A [L  2 --}- (y2 -- y,)2"] 

dy2 

(38) 

The  first integral is evaluated by expanding the numera to r  of the inte- 
grand by  the binomial theorem taking (L 2 q- l 2) as the larger term. 

f0 w f0 w 1 -- 2 dyl [-L 2 q- (y2 -- yl) 2-] dy2. (39) 
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This gives 

f ~  dy, ['~ [L~ ÷ P ÷ (yz -- yl)2-] ~ 2 do Jo [L 2 + (y2 - yl) 2] 
dye. 

Here 

fo TM fow dy2 = 24-L i + 12 dya [L 2 + (Y2 - y~)2] 

+ 4 4 ~  + 1~ f i  ( -  1)~+~ (2r - 2)! I-I/ 
- + 

(40) 

fo w fo TM (y2 -- yl)2rdy2 (41) 2H,.' = dy, EL ~ + (y2 - yl)2] 

This integral can easily be evaluated by  dividing the denomina tor  into 
the numera to r ;  there is a remainder  term. This gives 

~-1 (__ 1)~L2,w2r-2~ 
H /  = ,=0 ~ (2r - 2¢)(2r -- 2a -- 1) 

w L 2 + w 2 
+ (--  1)~L2r-lw tan  -1 ~ -- (--  1)~IL 2r log L2 (42) 

The  final result for C3 is 

C3 = 44L - ~ + w  2 -  4L - 2 w l o g ~ / ~ + w  2 -  w 

L 2 + w 2 4 w @  + F w 
-- 2~L ~ + P l o g -  + tan - 1 -  

L 2 L L 

oo 
+ 4~/~  + 1 2 ~  ( -  1)r+l (2r -- 2) ! Hr '  

r=l - 2 ~  (-~ ~- ])-.~r~ ( g  2 -3[- 12)r (43) 

n = 4 :  
Combining Eq. 12 and 17 

fo '~ dyl fow 1 n l yl)2-]dy2. (44) C4 l EL 2 + (y2 - yl)2~ t tan-~ [-L 2 + (y2 - 

In all the integrations for Cn the independent  variable for the first 
integration should be (y2 - yl), with yl constant ,  of course. In this 
case it is advantageous  to use partial  integrat ion first in such a way  
as to get  rid of the tan  -I factor by  differentiation in the double integral. 
The  first integrat ion in the  resulting double integral can be done by  
separat ing into partial  fractions. All  the integrands for the integrat ion 
with respect  to yl  involve a tan  -~ term. Once more  partial  integrat ion 
can be used in each integral to el iminate the tan  -I t e rm in the  resulting 
integral. 

In this way  one obtains 
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2 1 4 ~  + w ~ l 
C, - t an  -1 

L ~ 4 ~  + w* 

4- 2wq-L - /4 -  l: w 2l l tan-1 tan-1 _ 
L 2 ~ + l 2 L L 

2w w LS(L2 + 12 + w~) (45) 
- -~- tan  -I 7. - log (L 2 + 12 ) (L 2 + w2 ) 

n ~ 5 :  
Using Eqs. 12 and 18 

4fo ° fo = ~ dyl [L  ~ 4- (y~ _ yl)2- ] dy2 

2 dyl _ 2 2 12 _ 
- 5 [L  ~ + (Y~ Yl) ~ [ L  + + (y2 y~)~;~ 

2fo*° fo ~ dy2 - ~ dy~ [L  2 4- (y2 - yl)*~t (46) 

In the  case of the  first t w o  integrals the factors in the  integrands with 
the exponent  ½ are expanded by  means  of the binomial theorem in such 
a w a y  tha t  the  positive powers of (y2 - yl) appear  in all te rms except  
the  first. I t  is exact ly  the  same procedure  as t ha t  used in evaluat ing C3. 
Therefore  the  details will no t  be given. The  result  is 

C5 4 44L --~ 4- w 2 4w4-~ 4- 12 w = + tan  -I -- 
3L 3L* 3L 3 L 

2 ~  ( - 1 )  ~ (2r -- 2)! 
4- 3 ,=~ f i ~  "(r -- 1) !r! (L2 4- 12)-*+~J, '. (47) 

Here  
r--1 w2r-2aL2¢-2 

j /  = ~ (_1)~_ 1 4- (_l)~_lL~_3 w t a n -  ~ w. (48) 
(2r 24 1) 

n = 6 :  
From Eqs. 12 and 19 

C6 = 7~ dy~ I-L2 j r  ( y ,  _ yl)~-]2 

fo ~ fo ~ dy~ 1 dyt 12 
4 ['L 2 4- 4- (y2 -- yl)S][-L 2 4- (y2 - Yl)*-] 

3l fo~° fo '° 1 l y , )dy2 .  (49) 4- "-4 dyl [-L 2 4- (Y2 -- yi)2~5 l~ tan-~ 4L 2:4- (y~ _ 

The  second and third integrals are evaluated  by  the  same methods  
as in the  case of C,, namely  by  part ial  integrat ion on integrands involv- 
ing tan  -1 so as to get  rid of tan  -* in the  resulting integral te rm,  and 
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separation in partial fractions whenever integrands such as those in the 
second integral appear. 

The result is 

C6 = (212 + L2)w 
2L4x/-L -~ + l -° 

W 
_ _  tan -1 

(2w ~ + L~)l 
+ 2L44L ~ + w 2 

l 
tan-1 

4Z~ + w~ 
w w 1 / 

- 2L --~ tan-1 L 2L 3 tan-~ L" (50) 

The infinite series in C2 and C3 are convergent  for all values of the 
parameters  L, l, and w; and the infinite series in C5 is convergent 
provided w <~ l, a condition which can be satisfied in all cases. 

2. Reduction to Dimensionless Form. 

Equat ion 11 may  be rewrit ten as 

~, = C~,+3 (51) 
Cp+4 

For both theoretical and practical reasons it is desirable to write 
this equation in dimensionless form. 

Let  
D,(u ,  v) = L"-4C,,  (52) 

l 
u - L '  ( 2 1 )  

v - Z" (53) 

Then D~ is dimensionless. 
From Eqs. 51 and 52 

X D,+3(u ,  v) 
£, -- Dp+4(u, v)" (54) 

This  dimensionless equation gives X/L  for the cosmic-ray distribution 
determined by the value of p. 

Below, the formulas for D,,(u, v) are given : 

n = 2 :  
1 + u S + v 2 1 + u 2 + v 2 

D2(u, v) = log + u 2 log 
(1 +u2) (1  + v  ~) 1 + u  2 

1 + v  2 v 
+ v  ~ l o g l  + u  2 + v  2 + 4 v t a n  - i v -  4v~/i + u 2tan -1~/1 + u  ~ 

+ ~ g,G~u 2r+~, (55) 
r=0 
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where  

and  

1 ~ (2r - 2 j ) !  (2 j ) !  1 (56) 
gr = 22r-' j=o [-(r - j )  !-]3 [ j  !-]3 (2j  + 1)" 

2v v 1 + u 2 + v 2 
Go = ~ t a n  -~ log , (57) 

+ 4 i  + u S 1 + u '  

V v 
G, - (1 + u2)~ t a n - '  4 ~ '  (57a) 

and  for r >/ 2 

1 ~-~ (2r) ![-(r - a)!-is 1 
G~ - (1 + u2) ~ 0~_-, 2 s * ~ ( 2 ~ r  - -  -2-~ 2-[_ 1) !" (r - a) 

T-1 (2r) ![-(r -- ~)!33 1 1 
-- .=,Y'~ 22*(r.-~)~(2r --- 2-~ + 1) T'. (r -- a) (1 + u2)'(1 + u s + v2) "- ,  

( 2 0 !  v v (57b) 
+ 22r(r !)~'.(1 + uS) ~+~ tan-1 41 + u S 

n = 3 :  

D 3 ( u , v )  = 4 4 ] - + v  s - 4 -  2 v l o g 4 1  + v  ~ + v  
41 + v  2 - v 

- 241 + u  S log(1  + v  2) + 4 v 4 1  + u  s t a n  - i v  

- 8 1 ~ Z  (-1)~(2r - 2)! 
,=1 22~(r -- 1)lr!  (1 + u2)-rH, ,  

where  

,-1 ( -  1)'v st-s" 

H ,  = ,=0 y'~ (2r - 2a)(2r  - 2a - 1) 

+ ( - 1 ) ' v  t an  -l  v - ( -  1)"~ log (1 + vS). 
n = 4 :  

D4(u, v) = 2u~/1 + v 2 t a n  -1 - -  
41 + v  2 

+ 2v~/1 + u S t a n  -~ - -  
41 + u  2 

2u t an  -1 u 

1 + u* + v 2 
- 2v t an  -~ v - log (1 + u*)(1 + v2)" 

(58) 

(59) 

(60) 
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n = 5 :  

O~(u,  v) . . . .  

where 

4 4 4 ] -  + v 2 4 
3 3 + ~ v # l  + u  2 tan  - I v  

8 f ]  ( - 1 ) ~ ( 2 r  - 2)! 

-J- 3 r=l 22~( r -- 1) !r! 

r--1 
= Z,  ( - 1 ) o - ,  

n = 6 :  

(2u ~ + 1)v 
D6(u, v) - -2~  + u2 

X/L 
1.2 I~ 

1.24 

1.20 

I , l e  

; .12  

1.04 

(1 + u2)-~+~J~, (61) 

1.00 

V2r--2a 

2r -- 2a -- 1 
+ -- 1)~-lv tan  -1 v. (62) 

V 
tan-1 _ _  

41 + u 2 

(2v ~ + 1)u u 

+ 2 4 1 + v  2 t a n - t ~ / l + v  ~ 

- -  ½v tan -1 v - ½u tan  -I u. (63) 

I I ! I I I I I I 

~r(e):I(o) sEc • 

~ . ..---...-~ - I(o),I (o1 cos a e 

k / t .  

Fro. 2. 

Ill. RESULTS. 

The results obtained from numerical  computa t ions  utilizing the 
formulas developed in Section II are best  presented in a series of graphs.  

Figure 2 shows X / L  (the ratio of the average pa th  length to the 
normal  pa th  length) plot ted as a function of l / L  (the ratio of counter  
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~.IL 
128 

124 

1.20 

1.16 

1.12 

1.0e 

I I I ' I I I I i I 

A - l(e)= l (o) 
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• B 

1 , ~  " 

• u.r ~j ~.. 
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length to the vertical separation between extreme counters) for various 
indicated laws of cosmic-ray intensity versus zenith angle. These 
curves, as well as those plot ted in Fig. 3 on an expanded scale encom- 
passing a range of dimensions more commonly  encountered in the usual 
experimental arrangements,  apply when the counter  diameter  is neg- 
ligible compared with its length. 

Figure 4 contains a family of curves relating the same quanti t ies 
for a cos ~ 0 distribution of intensity.  Here, the width of the t ray  is 
taken into account.  The  magni tude of w expressed in terms of counter  
length appears as the parameter  indicated in Figs. 5 and 6 which repre- 
sent cos 0 and isotropic distributions in a similar manner.  The extreme 
cases of w = l and w << l for both the isotropic and cos ~ 0 distributions 
are shown on an expanded scale in Fig. 7. 

I t  is of interest to plot the results in terms of angles, as has been 
done in Fig. 8. The so-called angular resolution of a vertical cosmic- 
ray telescope is defined as the maximum allowed zenith angle for a ray 
which can produce a coincidence. This  angle 0k = tan -11/L. The 
angle between the vertical and the average path  through the telescope 
is 0 = sec -1 X/L. This greatly simplifies the shape of the curves, as 
may  be seen in Fig. 8. For small angles, the curves are practically 
straight lines. Thus,  the results are conveniently summarized by the 
following simple expression 

0 = klO,,. (64) 

Values of k~ and the condition under  which they pertain, are tabulated 
in Table I. 

TABLE I. 

Zenith Angle  
D~tribufion Law 

I(o) = I ( 0 )  c o s  2 0 

I(O) = I ( O )  

0.40 

0.36 

0.33 

0.55 

0.47 

0.37 

0.41 

0.43 

0.55 

0.60 

Range of OR 

00-25 ° 

25°-40 ° 

40°-55 ° 

0o-30 ° 

30o-60 ° 

60°-80; 

0o-45 o 

4 5 0 - 8 0  ° 

0o-30 ° 

30o-60 o 

<<l 

= l  

= l  

0.68 60°-80 ° 
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IV. CONCLUSIONS. 

These derivations and calculations have been performed only for 
arrangements in which the dimensions of the uppermost tray are the 
same as those for the lowest tray. Other cases concerning trays of 
different sizes could of course be treated in a manner similar to that used 
above. If the dimensions of extreme trays are not very different, the 
use of arithmetical means of the corresponding dimensions should yield 
results which are sufficiently accurate for most practical purposes. 
The most striking aspects of the results presented quantitatively in the 
various figures may be summarized qualitatively as follows: (1) the 
average path length through a vertical coincidence counter train is not 
greatly affected by a change in the zenith angle distribution law, pro- 
vided the separation between extreme trays is roughly comparable with 
the dimensions of the trays; (2) even for geometrical arrangements 
which intuitively appear to be unsatisfactory as regards angular defini- 
tion and the possible complicating effects arising from the distribution 
of allowed path lengths, the departure of the average path length from 
the vertical path length may be rather small. 
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