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After  a general t r ea tment  o f  the gather ing power  o f  particle 
telescopes, exact  formulae  are presented for the  geometrical  
factor and  directional response  o f  mul t i -e lement  cylindrically 
symmetr ic  telescopes with circular or  rec tangular  cross sections. 

Some useful approximat ions  to these formulae  are given. For  
the  gather ing power  in arbitrary geometries,  there is a discussion 
o f  applicable digital compute r  techniques focusing part icularly 
on a Monte-Car lo  method.  

I.  Introduction 

The coincidence counting rate of  any particle 
telescope depends upon the effective dimensions and 
relative positions, i.e. the geometry, of  the telescope 
sensors as well as the intensity of radiation in the 
surrounding space and the sensor efficiencies. The 
experimentalist 's task is to compute the intensity of  
radiation given the coincidence counting rate and the 
parameters (e.g. sensor dimensions) of  his telescope. 
This is the task not only of the space scientist with 
instruments in an unknown radiation environment 
but also of the nuclear physicist with his collimated 
beams. 

For an ideal telescope - whose efficiency for detecting 
particles of  a given type is one in a given energy interval 
and zero otherwise and whose sensors are mathematical 
surfaces with no t h i cknes s - the  factor of propor- 
tionality relating the counting rate C to the intensity 1 
is defined as the gathering power F of the telescope. 
When the intensity is isotropic, i.e., I = I 0, the factor 
of  proportionality is called the geometrical factor G. 
That  is 

C =  GIo. 

The determination of the telescope gathering power 
has usually been handled by approximation1"5); 
however, a few explicit formulae for the geometrical 
factor are knownS"a). After a general formulation 
of the problem, exact formulae are obtained below 
for the geometrical factor and directional response of 
cylindrically symmetric telescopes with circular or 
rectangular cross sections. For the gathering power 
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in arbitrary geometries, the discussion centers on 
an applicable digital computer approximation utilizing 
a Monte-Carlo method. 

2. General formulation 

The coincidence counting rate of a particle telescope 
can be expressed as: 

fofo C(x, to) -- ( l /T)  dt da"  P dco dE x 
o JS  

where 

C = 
5~ ----- 

/3= 

t 

to = 
T = 
do" = 

S 
d o  = d~b 

× ~e~(E,a, og, t)J=(E, co, x,t),  (1) 
0t 

~ = 

X 

r ~--- 

P d a =  

This equation just expresses the requirements for the 
detection of a particle. Although eq. (1) is quite general, 
still several assumptions are implicit in writing it down. 
These are: 

coincidence counting rate (see- 1), 
label for kind of particle, 
spectral intensity of the cah kind of particle 
(sec -~ cm -2 sr-1 E - l ) ,  
detection efficiency for the ~th kind of 
particle, 
time, 
time at start of  observation, 
total observation time, 
element of surface area of  the last telescope 
sensor to be penetrated, 
total area of the last telescope sensor, 

d cos 0 = element of  solid angle (0 polar 
angle, ~b azimuth), 
domain of 09, this is limited by the other 
telescope sensors, 
spatial coordinate of  the telescope, 
unit vector in direction o ,  and 
effective element of area looking into co. 
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1. that da, e), and x are time independent, which 
would not be the case for a spinning telescope; 

2. that no transformation of particle type occurs, 
other than that included in e,; 

3. that the particle trajectory is a straight line; and 
4. that J~ is independent of a and ~ o fx .  

The dropping of these assumptions only complicates 
eq. (1) and renders an analytic solution difficult. 

To simplify the problem further, we consider only 
ideal telescopes where the efficiency is independent of 
o9, tr and t and is given by: 

e ~ = 0 ,  ~ 4 : 1 ,  

e l = l ,  Ej <<, E <~ Eu , 

= 0 ,  E < E u ,  E>EI. 

Henceforth, we will drop the subscript 

C = 

where 

denoting 
particle type. If we now assume J is independent of x 
and t and separates into 

J(E,  co) = Jo(E) F(o)) ,  

then eq. (1) becomes 

~ u 

I = d E J o ( E  ) . 
1 

We note that eq. (2) would also result for those non 
ideal telescopes where the efficiency depends only 
on the energy; in this case, I would be given by 

fo o I = dE Jo (E) ~(E). 

Fig. 1. A telescope with a single plane detector viewing one 
hemisphere. 

The expression in square brackets in eq. (2) is the 
gathering power of the telescope when the intensity 
has an angular dependence given by F(to). That is 

We can define the directional response function of a 
telescope, A (co), as 

A (w) = .is da" ~. (4) 

Thus, eq. (3) may be rewritten as F r = .[ad~oF(e))A (~o) 
and the directional response function can be used to 
facilitate the computation of the gathering power. This 
is especially useful for numerical calculations. 

Considering eq. (3) again we see that if the intensity 
is isotropic then F(tn) is unity and the geometrical factor 
(the gathering power for isotropic flux) depends only 
on the geometry of the telescope. In other words: 

G=f dmfsda.~=f do~A(m ). (5) 

3. Explicit formulae 

3.1. SINGLE ELEMENT TELESCOPE 

For an ideal telescope consisting of a single planar 
detector (see fig. 1), the geometrical factor is easily 
evaluated from eq. (5) as 

o:fod  f  =fofsCOS0d do 
fo = 2 7rA cos 0d cos 0 = 7~A, 

where s~, the domain ofo), is a full hemisphere (particles 
incident from one side of the detector) and A =Is  da 
is the surface area of the detector. Thus, the geometrical 
factor of a single planar detector of area A (with 
particles incident from one side) is given by 

G = rrA. (6) 

It is clear that if particles are incident from both sides 
then the area of the detector is doubled, top plus 
bottom. From eq. (6), it follows that the geometrical 
factor o f  any single detector is ~z times the total area 
provided there exists a tangent plane at every point on 
the detector (except possibly for a set of points of 
measure zero) and provided the detector lies entirely on 
one side of each tangent plane. This includes cylinders, 
spheres, etc. The directional response function and the 
gathering power are also easily evaluated from 
eqs. (3) and (4). 
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3.2. TWO-ELEMENT TELESCOPES 

An ideal cylindrically symmetric telescope with two 
planar detectors is shown in fig. 2. As ever, the geo- 
metrical factor is given by eq. (5) with the domain £2 
limited by the top detector. That is, 

G=f~fs2(daz'~)do~. 
In this case, however, d~o may be expressed as 

P • dal  
d ¢ o = - -  ?.2 ' 

where r is the distance between dal,  and do z. Con- 
sequently, 

G=f j" (~'daO(¢'da2) 
r 2 St 82 

~ fs  f dtr ld t r2  = h t A 2  
l S2 12 l 2 ' 

where A t, A2 are the areas of the detectors and l 
is their separation. Thus, 

A1 A_____2 >/ G. (7) 
l 2 

This inequality is strictly valid for any two element 
telescope. 

1. Circular symmetry: For a telescope with two 
circular detectors of radii R I and R z respectively 

Fig. 2. An ideal cylindrically symmetric telescope with two 
circular detectors. 

(cf. fig. 2), the geometrical factor can be evaluated 
by direct integration of eq. (5). Whence, 

G = ½n 2 [R2,+R22+l 2_{(R2+R2+12)2_4R2R2}½]. 

(8) 

For quick estimation, this exact result can be ex- 
panded yielding to the first order: 

G >/ A1 A2 (9) 

It should be noted that eq. (7) holds for all telescopes, 
whereas eq. (9) is applicable only to two circular- 
detector telescopes. Further, we can evaluate the 
directional response function from eq. (4). Evaluation 
of this function can be visualized as the overlapped 
area between the detectors when one is parallel- 
projected onto the other from direction o~. Thus, it is 
possible to write A ((~) by inspection. The result is 

A(og)=A(0,49)= nR~cosO, Oc>~O>~O 

= cos0 [½R~(2 7 ~ - s i n 2  7't) + 

+ ½ R 2 (2 7J2 - sin 2 ~2)] ,  

= o ,  0>0m; 

where Rs = smaller of (R1, R 2 ) ,  

- t  IRt -R2I  
0~ = tan 

1 

0 m = tan  - 1 R t + R 2 ,  
1 

0m >/ 0 >/0c 

(10) 

7tl = cos- l IRZ +12 tan2 0 -  RZ], an d 
2 lR2 tan 0 

~2 = cos- t IR2+12tan20-R2].  
2 IR 2 tan 0 

Note A (o~)= A(O) with no q5 dependence. Whenever 
the intensity is nonisotropic with an angular dependence 
given by 

F(~o) = F(O, qS) = cos"0, 

the gathering power can be directly evaluated by 
integrating* eq. (3) with A(og) given by eq. (10). If n 
is even, the result contains only elementary functions 

* The integration proceeds in a straight forward manner by parts. 



8 J .D .  SULLIVAN 

[as eq. (8) for  n = 0]; whereas, if n is odd, the result 
contains complete elliptic integrals, which are available 
in tables. 

2. Rectangular symmetry : For  a telescope with two 
rectangular  detectors with sides (a~,bj) and (a2,b2) 
and where a~ and b~ are parallel to a2 and bz respec- 
tively (cf. fig. 3), the geometrical  factor  is still obtained 
by integrating eq. (5). Whence 

G = 1 2 1 n l Z + ~ 2 + 6 2  I2+y2+flz + 
12 +0¢2 + f12 12+~2+62 

+ 2ct(12+fl2)~tan -1 - -  
O~ + 

(i 2 +,z)~ 

+ 2fl(12+o~z)~tan - i  fl 
(lZ + fl2) ~ 

_ 2 ~ ( / 2 + 6 2 ) ~ t a n - 1  
( /2+32)¢ 

_ 2 f l ( / z + y 2 ) + t a n - ~  fl ( l l )  
(t2+~2) + 

_ 2y(12_Ff12)~ tan-1  7 
(12+fl2) ~ 

-- 2 6 ( 1 2 + ~ 2 ) k  tan_ t 6 + 
(12+~2)~ 

+ 2 7 ( / z + 6 2 )  ~ tan - t  ~ + 

+ 26(12+~2) ~ tan - I  
(/2+~2)½' 

J 

/ 
I o2 - - /  ~ I 

/ 

where 

o~ = ½(al +a2), fl = ½ ( b l + b 2 ) ,  

y = ½ ( a l - a z )  and  5 = ½(b 1 - b 2 ) .  

This expression simplifies if the detectors are either 
square or identical and simplifies even more if the 
detectors are identical squares. One useful algebraic 
approximation for G valid whenever 12 > maximum 
sum of  any pair (0~2,f12,y2,(] 2) is 

A1Az AiA2 I aZ+aZ~+b2+b21 
l----S-- >~ G >~ - - 7 -  1 -  6 12 . (12a) 

Otherwise, for  small l, 

G ~ 4ztAl  A 2 (12b) 

The directional response function is again obtained by 
visualizing the projected overlapped area but  depends 
in this case on ~b as well as 0. A functional form useful 
for  computer  calculations is 9) 

A(O,c~) = X . H ( X ) .  Y.H(Y) ,  (13) 

where 

X = a2 - ( y+¢)H(7+¢) - (Y -¢ )H(Y-~ ) ,  

Y = b2-(6+rl)H(6+rl)- (6-r l )H(3-q) ,  

= - ! tan 0 cos ¢,  q = - l tan 0 sin ¢ ,  and 

H ( Z ) =  1, Z > O  

= 0 ,  Z ~ < 0 .  

213 

dto 

Fig. 3. An ideal cylindrically symmetric telescope with two Fig. 4. An ideal cylindrically symmetric telescope with three 
rectangular detectors, circular detectors. 
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3.3.  MULTI-ELEMENT TELESCOPES 

For a telescope with more than two sensors, deter- 
mination of the geometrical factor becomes somewhat 
tedious; eq. (5) is still correct but now the domain £2 
is limited in general by each of the medial detectors. 
We demonstrate the method by computing the 
geometrical factor for the telescope shown in fig. 4 
of three circular detectors of radii R1, R E and R a 
and inter-separations 112 and 123. The telescope 
detectors are labeled such that R~ _> R 3 with detector 
2 in the middle. Again we will integrate eq. (5), but 
instead of obtaining A(0)) by integration, we write it 
down by inspection and then do the 0) integration. 
Define A123(0) ) as the directional response function 
of the three element telescope. Define Aij(0) ) as the 
directional response function of the two element 
telescope (/j) given by eq. (10). Also define 

0~ = tan - 1 R i + R i ,  113 = /12+123,  
1 o. 

0~ j = t a n - l R ~ - R j ,  and 
lit 

0a = tan -1 (123RZ+112R~-IlaR2)~ 

112 123 113 

The angle 0~ corresponds to that parallel-projection 
angle for which the three circles bounding the detectors 
intersect in exactly 2 points. Before writing down 
.4123(O) ) it should be noted that all three detectors 
may not be active in defining the telescope [for instance, 
if R 2 > R1, R3, then detector 2 does not limit the 
response of the two-element telescope (13), in which 
case the respective two-element telescope geometrical 
factor is .4123]. These cases are 

h i 2 3  = A13 , 012 >i 013 , 

12 = h i 2  , 0m 13 1> 0m t , 

13 = A23 , 012 /> 0 h . 

The directional response function for the distinct 
three-element telescope is 

A123(0))  = 0 ,  0 /> 013 

= A 1 3 ( 0 ) ) ,  013 ~ 0 t> 0 a 

Now the integration of eq. (5) is immediate 

G123 = Gt3-7~2 R2sin20a + 

-]- Z23(Oa) qt-Z12(Oa)-Z13(Oa), (15)  
where 

fo Zij(c~) = 2 ~ sin OAij dO. (16) 

Eq. (16) is almost identical to eq. (5) except that the 
limit of integration is no longer fixed as 0~; thus Z~j(e) 
can be considered the incomplete geometrical factor 
function. Explicitly, it is 

Z i~ (c0=- -~  - - - ( a b )  ~ , O~ <~ ~ 

[ 2  a + b - 2 x  = nl 2 (a b) COS_ 1 
2 a--b 

2 a b - x ( a - b )  _ (ab)½cos- 1 + 
~(a - b) 

+ [(a - x) ( x -  b)] ~ + 

K 

sin 2 0 J" cot 
+ - -  (2+#)2cos -1 ct(tan2a+2/~) + 

2 [ 2+/~ 

+ (2-/~)2c°s-I  2-pc°t ct (tan2 ~ - 2 # ) } ] ,  

0:J 
= rc 2 R 2 sin 2 ~, 0 ~< c~ ~< 04, (17) 

where 

a = l + 2 2  , b =  1+/~2, t c = l + t a n  2~, 2 = ( R  i+Ri)/l 

and /z = (Ri-Rj)/l .  

The remaining symbols were defined above. 
The gathering power can be computed by integrating 

eq. (3) but will be expressed for odd powers of cos 0 
in terms of incomplete elliptic integrals. For a circular 
detector telescope with n sensors, the geometrical 
factor can be evaluated analogously in terms of the 
incomplete geometrical factor function. 

Thus, given a telescope with sufficient symmetry, 
the directional response function can be written down 
by inspection and the geometrical factor and gathering 
power explicitly integrated. 

= A12(0))-[-A23(0))--TzR2cosO, 0 a ~ 0 ~ 012 

= A23((D) ,  0~ 2 1> 0 /> 0. (14) 

4. Computer approximations 
Analytical computation of the gathering power 

becomes increasingly difficult for more complex 
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telescope geometries. In these cases, numerical solution 
(or approximation) on a digital computer is usally 
easier. The solution again starts with eq. (3) for the 
gathering power F #  

rv= f d V(o ) f d F(o )A(oo). (3) 

One approach is to integrate eq. (3) numerically using 
any of the standard textbook methods. Another 
approach, which is quite general and efficient, is to use 
a Monte-Carlo technique to 'integrate' eq. (3). 

The basis of this technique is the definition of the 
gathering power as a factor of proportionality between 
the incident flux and the observed coincidence counting 
rate. The general procedure may be outlined as 
follows: 

1. Choose a random* point on the opening (planar) 
aperture and a random trajectory through this point 
in such a way that a large number of such choices would 
correspond to the intensity incident on the aperture. 

2. Follow this trajectory to see if it passes through 
the detector(s) of in teres t -  this might, for instance, 
include the passage of the particle through a magnetic 
field. 

3. Tally the results of step 2, and, if applicable, 
calculate any item of interest, e.g., the angle of inter- 
section of the trajectory with respect to a dE/dx 
detector. 

4. Repeat steps 1-3 enough times to let a statistical 
pattern emerge. 
The gathering power for the telescope is then given by 

number of trajectories detected 
F = x 

total number of trajectories chosen 

x gathering power of the opening aperture. (18) 

The heart of the problem is step 1, simulating the 
intensity on the opening aperture. This is done as 
follows: 

a. In choosing a random point on the opening 
aperture, equal areas should have equal weights. 
In cartesian coordinates da = dxdy. Thus, choose x 
and y random. This method can be used for any 
arbitrarily shaped aperture by enclosing it within a 
rectangle, choosing random points within the rectangle, 
and then using them if they fall within the arbitrary 
aperture. For a circular aperture dtr=½dr2d~b thus 
choose r 2 and q5 random*. 

* The availability of a random number generator in the computer 
software is assumed. 

* Choosing random r 2 is quite different from choosing random r 
and squaring. 

b. To choose trajectories corresponding to the 
intensity incident on the aperture, consider the element 
of area de centered on the point picked in a. The 
incident directions will now be weighted not only 
by F(m) but also by a factor cos 0 from dtr. ~ = cos 0 de. 
Thus, the weighted solid angle becomes 

cos 0 F(co) d cos 0 dq~ = 2; F(co) d cos 2 0 d~b. 

The method of choosing trajectories is now apparent: 
if F(co) = 1, i.e., an isotropic intensity, choose random 
cos20 and random qS; if F(co) = cos" 0, choose random 
cos" + z 0 and random ¢; etc. 

In general most of the random trajectories through 
the opening aperture will miss the other telescope 
elements. This can make computer programs somewhat 
inefficient. However, if sufficient symmetry is present, 
some improvements are possible. For instance, 
for telescopes with circular cylindrical symmetry 
it is more efficient to limit the range of 0 to between 
0 and 0m. The conversion to an absolute scale is 
provided simply by the ratio of the number of trajec- 
tories used to the number that would have been used 
without the range limitation. 

This Monte-Carlo method is easily applied. It is 
also useful for approximating eq. (1) and treating the 
problem in general. 

5. Conclusion 

We have presented an analytic treatment of 
telescope gathering power and have given explicit 
formulae for the geometrical factor in several general 
cases. In applying these formulae it must be recalled 
that the analysis is for ideal telescopes. For real 
telescopes, there exist many other factors which will 
affect the problem (cf. sec. 2). Two of these, not 
mentioned previously, are finite detector thickness and 
variable or ill-defined sensitive area. These introduce 
uncertainties in the telescope geometry. When such 
other factors are important or when the telescope 
geometry is complex, the Monte-Carlo approach 
discussed in section 4 may be used. 
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